Problem 2.5

Suppose that a projectile which is subject to a linear resistive force is thrown vertically down with a speed $v_{y o}$ which is greater than the terminal speed $v_{\text {ter }}$. Describe and explain how the velocity varies with time, and make a plot of v_{y} against t for the case that $v_{y \mathrm{o}}=2 v_{\text {ter }}$.

Solution

Draw a free body diagram for the projectile. Let the positive y-direction be downward.

Apply Newton's second law in the y-direction to get the equation of motion.

$$
\sum F_{y}=m a_{y}
$$

The two forces to consider are the gravitational force and the linear air resistance force.
Let $v_{y}=v$.

$$
m g-b v=m \frac{d v}{d t}
$$

Add $b v$ to both sides.

$$
m \frac{d v}{d t}+b v=m g
$$

Divide both sides by m.

$$
\frac{d v}{d t}+\frac{b}{m} v=g
$$

This is a first-order linear inhomogeneous ODE, so it can be solved with an integrating factor.

$$
I=\exp \left(\int^{t} \frac{b}{m} d s\right)=e^{b t / m}
$$

Multiply both sides by I.

$$
e^{b t / m} \frac{d v}{d t}+\frac{b}{m} e^{b t / m} v=g e^{b t / m}
$$

The left side can be rewritten as $d / d t(I v)$ by the product rule.

$$
\frac{d}{d t}\left(e^{b t / m} v\right)=g e^{b t / m}
$$

Integrate both sides with respect to t.

$$
e^{b t / m} v=\frac{m g}{b} e^{b t / m}+C
$$

Solve for v by dividing both sides by $e^{b t / m}$.

$$
v(t)=\frac{m g}{b}+C e^{-b t / m}
$$

In order to determine C, apply the initial condition $v(0)=v_{y o}$.

$$
v(0)=\frac{m g}{b}+C=v_{y o}
$$

Solve for C.

$$
C=v_{y \mathrm{o}}-\frac{m g}{b}
$$

Therefore, the formula for the projectile's velocity is

$$
v(t)=\frac{m g}{b}+\left(v_{y \mathrm{o}}-\frac{m g}{b}\right) e^{-b t / m}
$$

If $v_{y \mathrm{o}}=2 v_{\text {ter }}=2 \mathrm{mg} / \mathrm{b}$, then

$$
\begin{aligned}
v(t) & =\frac{m g}{b}+\left(\frac{2 m g}{b}-\frac{m g}{b}\right) e^{-b t / m} \\
& =\frac{m g}{b}+\frac{m g}{b} e^{-b t / m} \\
& =\frac{m g}{b}\left(1+e^{-b t / m}\right) \\
& =v_{\operatorname{ter}}\left(1+e^{-t / \tau}\right)
\end{aligned}
$$

The velocity of a projectile thrown downward with initial velocity greater than the terminal velocity will fall exponentially to the terminal velocity. This is because the air resistance is greater than the gravitational force.

